View Single Post
Old 01-25-2007, 10:20 PM   #2
NASIOC Manufacturer
Member#: 74110
Join Date: Nov 2004
Location: PERRIN Performance


This was the simplest choice we made, the answer EXEDY Twin plate. The only item that we didn't have to worry about working for this build was the clutch. The twin plate can hold 600ft-lbs of torque while feeling nearly as smooth as a stock clutch. Not much more to say about that!


The engine was all assembled and ready to be dropped in. Like dropping in the 4 cylinders, they either slide perfectly onto the tranny, or you fight to get it just right for half an hour. The engine just flew onto the tranny like it should, and like we hope it all cleared everything. Well kind of. The super soft OEM engine mounts sag quite a bit more than the stock STI mounts. So much so the uppipe hit the sub frame a little. Out comes the plasma cutter, and we now have clearance. Next up was the cooling system.


Again keeping its simple, we used an 05 H6 radiator. The H6 engine has coolant inputs on each head, and in turn the radiator needs 2 outputs. The OEM radiator was the ticket. It's the same as the STI radiator in thickness so it would at least support 400WHP with the cool weather we have in Oregon. An interesting find was the stock H6 Thermostat was very hot compared to the STI. We decided to leave it in and see what happens. The amount of coolant the engine takes is basically the same as the STI, so nothing strange there. But there is one fluid that makes it very different than a 4 cylinder. Luckily I bought a case of oil, because the normal 4 quarts turned in to 7! Yes seven quarts! Now the oil changes are going to $55. Just a small price to pay for big power.


Now that the engine is in, time to connect the turbo to the intercooler, and then to the throttle body. Nothing special about this, just started with an off the shelf WRX FMIC kit and added some bends and couplers, and we are done. The throttle body is much closer to the firewall than the STI is, so some modification to the last boost tube was needed. BOV was placed between the fender well and the throttle body on the boost tube, and it was now time to fire.

PICTURE OF Engine with 3582R. It looks like it is supposed to be there!


With a base fuel map from my good friend Jason, and quick calculation of fueling needed base on the difference of the H6 and STI, it was ready to fire. First some oil priming to ensure there was at least some oil on all the bearings. First click of the key, and BAM!!! It fired right up! But there was one thing that made me instantly turn the engine off. A very scary rattle/no bearings/no oil/something wasn't installed right sound. Fired it again and this time gave it a few seconds, still the noise was there. What could be wrong?? My stomach sank. One more try, this time I would get out and listen. Fired right up, and just as I was about to get out, I lifted my foot of the clutch and the noise went away. WOW, that was a good feeling. It was just the twin plate Exedy. Exedy told us that extra noise is normal with these clutches, but WOW, they are noisy!

Now that the scary sounds are gone, the car was allowed to run for an hour, and go through the heating and cooling process a few times. The first thing everyone noted was sound. That was such a sweet sound, and I was looking forward to reving this baby up. Time to take her home! Being the trusting person I am, what could go wrong? Well nothing did, and we had 2 weeks before we left for SEMA. I was definitely going to take it easy for the next couple of weeks.


As with all my past personal cars, water injection was a must. I started looking at the 2D system for my car, which of course is one of the most versatile systems Aquamist makes. This system is would do everything I need it to do and more. Since we were working on building our SEMA car, a quick email was sent off to Richard, who is a genius BTW, and in no time, a response. I told Richard what we were doing for SEMA and he was very excited to be part of our car and offered up something special. But he wouldn't tell me much about this special system. As time passed I started poking at him about building system that would be special to PERRIN with some features I thought were important. With my constant nagging of a dream WI system, I didn't want to push to hard for a date when the special SEMA WI system would ship. I was getting a little worried. It was now 1 week before SEMA and a box from a far away land showed up.

Holy ****! I think were my exact words. I couldn't believe what Richard had done. I was expecting a pump some nozzles, injectors, bunch of wires, basically a 2D system with a couple extra things thrown in. Boy was I wrong. This was the craziest, most thought out WI system I have ever seen. Special Nozzle holders, nozzles, pressure check valves, Twin pumps, mounted to a board with nozzles, relays circuit boards, dash display, and all incase in a plexiglass case! Richard went above and beyond for us for SEMA.

Aquamist port injection nozzles installed. These are special .3mm nozzles with individual nozzle holders.

Close up shot of nozzles and holders. Love these holders! Wish they included them with their other systems! Hmmmm......

The FIA2 is the injector amplifier used to drive the signal for the Aquamist injector. (2) Purple solenoids are used to turn on and off flow to the nozzles. One solenoid controls the port injection nozzles, and the other controls the pre-turbo nozzle.

This is where the magic happens! Twin pumps means 2 times the flow. Another FIA2 is used to amplify the signal from teh front to the back. You can see the relays, fuse panel, and the injector all nicely mounted on the board. What you don't see is the acumulator located between the pumps. Richard sure spent alot of time on this!

Again, Richard went nuts creating this system for us! Switch number one is to arm the system, switch number 2 is for checking the level switch. Port injection on/off, and pre-turbo injection on/off are the last two switches. The other things you can't see is the wire harnesses, that connect this all together. Hmmm...... Dash display......plug and play harness........nozzle holders......... pump and electronics all mounted on a injection.........i got an idea what to do with this! This relationship would not only pay off for SEMA, but for something else in the near future.

SEMA 2005

Day one of SEMA 2005, the PERRIN H6 STI debuted. After months of work, and a 2000 mile drive from Portland to LV and back, the car had made it. The payoff was well worth it. It was our first year attending SEMA as a company, and the car was a hit!

Almost too factory. Many people just walked by thinking just another STI. Toward the end of the show, we ended up putting a sign, 'Turbochaged H6". But anyone that new what a Subaru engine looked like, knew that something didn't look quite right.

Picture of our booth at SEMA. This was our first year at SEMA, and it turned out great!

All of this wouldn't of happened if it weren't for my sponsors, and support from my friends and family (not appearing in any order) Special thanks to Dustin Harris, Jeff Sponaugle, Jarrad Bowen, Adam Taft, John Herring, Ben Collins, Adam Koppel, Jason Bluth, Richard of course from Aquamist, Willy Tagliavani from Supertech, Roland at H&R, Andrew Nam from Hydra EMS, John Lietl from PIAA, Toyo, Autopower, the crew at PDXTuning, and of course my wife for "allowing me" to work on my car more than be at home......

And that concludes the story.

Oh wait, the story is just getting going.....


After the 2000 miles, and a week of standing on our feet, and not sleeping much, we arrived back home. We took a step back and looked at what we had done. It was a crazy time leading up to SEMA, and now it was time to take a breath and relax. Ya, for about 1 minute! The next day, the tuning had begun!


One of the most important parts of the build is the tuning. As with any high performance engine anytime you ask more than 2 times the stock power, tuning becomes very important. With the 4 cylinders, and the experience we have, things like timing curves, fueling needed, and Air Fuel Ratio the engine likes to see, are almost a no brainer. Who knows what we would find.

Starting with a low 10psi boost setting, and a safe 10.5-1 AFR, the tuning had begun. After weeks of road tuning, we started to see what AFR it liked to run, and timing it needed. Like the STI, 10.5-1AFR was way to rich and it seemed to be happier in the 11.5-1 area. From there it was time to play with the AVLS system. When to turn it on was the question. From Hydra it was set to 5500 RPM. This sounded like a good starting point. The more miles were put on the car, the higher the "redline" became. Until this point the tuning was going fine, and the redline had slowly increased to 5500rpm. Then the day came when I decided to bump the redline to 6000. Up until this point the car was fast, but not 400WHP by any means. The first pull and at 5500 the car came to life! It was a little scary, kind of like a huge turbo with big lag. What changed at 5500RPM? Oh ya, that is where the lift turned on.

Because of this huge onset of power, I started turning the lift on sooner to see what happens. The lift was slowly turned down 500 RPM at a time until it felt like it wasn't getting any faster. An interesting thing is turning the lift on lower than 3500RPM would actually make the BOV blow off! This was happening because of the instant onset of the different cam profile, would cause a huge drop in manifold pressure, in turn the pressure in the boost tube was higher causing the BOV to blow off. This wasn't going to work, so some where in the 3700-4500 range is where it felt best. So how would we determine which is the best and most powerful RPM.

From there we turn back to HYDRA and its auto fuel tune feature. This feature is a great way to get fueling close quick. First was to set lift on point at 6000. Let the ECU do some tuning and save that map. The set the lift on all the time, and let it work some more magic. When comparing both maps created from the auto tuning, there was a very interest dip. With the lift set at 6000, the fuel map was adding fuel up until about 4000-ish RPM, then took a huge dive until the lift came back one. In similar but opposite fashion, with the lift set on all the time, it would remove fuel up until about 4000-ish RPM, then start adding beyond that point. From comparing both maps, it became pretty obvious 4000RPM would be the magic lift point. At least for the GT3582R turbo, and header setup.

Just a quick shot of the Hydra interface software. It simple, and very easy to figure out. But MAN they need to get rid of that ORANGE back ground! Love that auto tune feature to get your base map going quick.
* Registered users of the site do not see these ads.

Last edited by PERRINJeff; 11-01-2013 at 07:27 PM.
PERRINJeff is offline   Reply With Quote